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Abstract
Large-scale pretrained AI models have shown state-of-the-
art accuracy in a series of important applications. As the
size of pretrained AI models grows dramatically each year
in an effort to achieve higher accuracy, training such mod-
els requires massive computing and memory capabilities,
which accelerates the convergence of AI and HPC. However,
there are still gaps in deploying AI applications on HPC sys-
tems, which need application and system co-design based
on specific hardware features.

To this end, this paper proposes BaGuaLu1, the first work
targeting training brain scale models on an entire exascale
supercomputer, the New Generation Sunway Supercomputer .
By combining hardware-specific intra-node optimization
and hybrid parallel strategies, BaGuaLu enables decent per-
formance and scalability on unprecedentedly large models.
The evaluation shows that BaGuaLu can train 14.5-trillion-
parameter models with a performance of over 1 EFLOPS
using mixed-precision and has the capability to train 174-
trillion-parametermodels, which rivals the number of synapses
in a human brain.

CCS Concepts: • Computing methodologies → Parallel
computing methodologies.

Keywords: Artificial Intelligence, Supercomputers, Mixture
of Experts, Heterogeneous Architecture
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1 Introduction
Deep learning (DL) is of critical importance in many fields,
including computer vision (CV), natural language process-
ing (NLP), recommendation systems, and decision-making
models. Pretraining of large DL models has reestablished
state-of-the-art accuracy in a series of downstream tasks
in NLP and CV, indicating that increasing model size can
significantly enhance model accuracy [1, 2, 14, 21, 22, 32].

Recent studies have shown that amixture-of-experts (MoE)
approach enables models to scale to a gigantic number of
parameters with a constant computation cost [3, 11]. An
MoE layer accepts a token representation 𝑥 as input and
routes it to the top-𝑘 experts selected from a set of 𝑁 experts,
as determined by a sparse-gated router. MoE has demon-
strated broad success in NLP pretraining and downstream
applications, especially in machine translation [3, 11, 28, 29].

Although large-scale pretrained models have shown state-
of-the-art accuracy in a series of important applications,
training large-scale pretrained models is still a very tricky
task and requires massive computing, memory, and network-
ing capabilities. GShard [11] and Switch Transformer [3]
tackle the problems of complexity, communication cost, and
training instability, scaling model size to over one trillion
parameters with better accuracy. There is still potential for
further scaling up the model size, even to over 100 trillion
parameters, which would rival the number in synapses of a
human brain.
Although large-scale models can bring promising accu-

racy, training such models brings unprecedented challenges.
As models grow increasingly larger, enormous computing
capability, memory capacity, and efficient global commu-
nication are desired for training tasks. On the other hand,
high-performance computers demonstrate incredible com-
puting power for scientific applications. For example, the
latest machine in the Sunway family [4], the New Generation
Sunway Supercomputer , which can achieve over 1 EFLOPS
peak performance and is equipped with approximately 9 PB
1BaGuaLu is a magic stove in Chinese ancient mythology which could
generate efficacious medicine.
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memory, also provides an opportunity for extremely large-
scale model training.
However, deploying training tasks on such large-scale

HPC systems is far from straightforward. In spite of specific
hardware and network topology designed for traditional
HPC applications, the following concerns should also be
addressed.
Architecture challenges. HPC systems often have specif-
ically designed architectures to meet HPC application re-
quirements. Applications and systems must be co-designed
to meet specific features of the architecture so that computa-
tion resources can be fully utilized to achieve high perfor-
mance.
Huge memory capacity. Training large models requires
enormous memory capacity to store model parameters and
intermediate results during training. However, different parti-
tioning strategies result in different communication patterns.
How to partition parameters, optimizer states, and gradients
among workers significantly affects memory usage and is
therefore critical when scaling up the model size.
Parallel strategy. In order to scale training tasks to a full-
scale HPC system, parallel strategies must be redesigned
because current strategies are inefficient when scaled to
such large systems. For example, MoE brings huge All-to-
All communication requirements for directing inputs to ex-
perts, whereas data parallelism introduces a huge All-Reduce
communication for parameter updating with averaged gradi-
ents. Considering that Sunway has as many as 96, 000 nodes
and network bandwidths differ between intra- and inter-
supernodes, communication during training must be care-
fully designed and optimized. Moreover, load imbalance also
becomes severe when scaling the model to a whole super-
computer.
Mixed-precision. Unlike traditional HPC applications that
mainly use double-precision computations, most DL applica-
tions use single- or mixed-precision to maximize computa-
tion throughput. Because Sunway provides support for dif-
ferent types of floating-point computations, including FP64,
FP32, FP16, and BF16, how to combine different types effi-
ciently and effectively for mixed-precision training on an
unprecedentedly large model is critical for both research and
industry.
To address these issues, this paper proposes BaGuaLu,

the first work targeting training brain scale models on an
exascale supercomputer, called the New Generation Sunway
Supercomputer . BaGuaLu enables training up to 14.5-trillion-
parameter models with up to 1.002 EFLOPS. Additionally,
BaGuaLu has the capability to train models with up to 174
trillion parameters, which rivals the number of synapses in
a human brain.

The main contributions of this work are listed as follows:

• Efficient hardware-specific intra-node optimizations for
theNew Generation Sunway Supercomputer , including core
scheduling, memory segmentation, and memory access.

• A parallel strategy, MoDa, which combines MoE paral-
lelism and data parallelism to scale the model to the whole
supercomputer.

• A distributed optimizer, ParO, which effectively reduces
computing time and memory usage.

• A new load balancing strategy, SWIPE, for MoE to reduce
the waste of computation resources.

• A layer-wise mixed-precision strategy that can optimize
the training process without affecting convergence.

• A demonstration that BaGuaLu can train models with
up to 14.5 trillion parameters with over 1 EFLOPS perfor-
mance. BaGuaLu also shows the capability to train brain
scale models (over 100 trillion parameters).

2 Background and Related Work
2.1 Transformer Model and its Training
This subsection introduces the transformer model[31] as
the application target of this paper. The model accepts in-
put sequences and feeds them into multiple transformer
blocks. Each transformer block contains a multi-head atten-
tion layer followed by a point-wise feed-forward network
(FFN). GShard[11] and Switch Transformer[3] further re-
place the FFNs with mixture-of-experts (MoE) layers as de-
scribed by Shazeer et al.[29]. AnMoE layer routes each token
to top-𝑘 experts (FFNs) selected from multiple experts, de-
termined by a sparse-gated router. The overall structure of
the transformer model is leveraged with MoE.

Considering the training process of such a gigantic trans-
former model, the following here discussion addresses its
computation and communication characteristics. The com-
putation flow of the training process is shown in Figure 1.
The training data are distributed to the memory of each node.
In each training iteration, a batch of sampled image and text
data are concatenated into sequences as the model inputs. As
experts are sharded across nodes, theMoE layer contains two
All-to-All communications to dispatch and combine tokens.
The computation on the layers introduces both large and
batched smaller matrix multiplications at a precision of FP32
or lower. After the forward pass, the language model loss is
evaluated for gradient computation using back-propagation.
The computation and communication patterns of a backward
pass are similar to those of a forward pass. After the back-
ward pass, the gradients are accumulated by an All-Reduce
operation, and the parameters are updated by gradient de-
scent. The above process is repeated for multiple rounds
until the model converges.

2.2 Related Work
Growing size of pretrained models The size of deep
learning models has been growing rapidly in recent years. As
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Figure 1. Simplified computing process of the proposed
model.

shown in Table 1, the model size has developed from ELMo
with 94 million parameters to Switch Transformer with 1.6
trillion parameters, with an increase by 1 or 2 orders of mag-
nitude each year. Therefore, training systems for extremely
large-scale models are desired.

Table 1. Large-scale models released in recent years.
Name Model Size Date

ELMo [19] 94 million Feb 2018
GPT [20] 110 million Jun 2018
BERT-Large [2] 340 million Oct 2018
Transformer (Mesh-TensorFlow) [28] 5 billion Nov 2018
Transformer (GPipe) [6] 6 billion Nov 2018
GPT-2 [21] 1.5 billion Feb 2019
GPT-2 like (Megatron-LM) [30] 8.3 billion Sep 2019
Transformer (GShard) [11] 600 billion Jun 2020
Turing-NLG [23, 25] 17 billion Feb 2020
GPT-3 [1] 175 billion May 2020
Switch Transformer [3] 1.6 trillion Jan 2021
BaGuaLu (ours) 174 trillion April 2021

Large-scale model training Training dramatically large-
scale models faces enormous challenges that various ap-
proaches and systems have been proposed to address. Mesh-
TensorFlow [28] provides a language to help implement
model parallelism, which can train transformer models with
up to 5 billion parameters at a sustained performance of 6
PFLOPS. GPipe [6] is a framework for implementing pipeline
parallelism. A transformer model with 6 billion parameters
was trained using GPipe. Megatron-LM [30] implements
a hybrid parallel strategy for language models, including
model parallelism, data parallelism, and pipeline parallelism
across GPUs among different GPU servers. They reported
the training of a larger model with 8.3 billion parameters at
a sustained 15.1 PFLOPS performance. GPT-3 [1] is a model
with 175 billion parameters, trained using a mixture ofmodel
parallelism and pipeline parallelism.

ZeRO [23] from DeepSpeed [25], on the other hand, parti-
tions optimizer states, gradients, and/or model parameters
among workers to reduce memory usage. ZeRO does not
change the parallel strategy but enables data parallelism on
larger models. Turing-NLG, a model with 17 billion param-
eters, was trained using ZeRO. However, ZeRO cannot fit

into the parallel strategy requirement here, which is beyond
plain vanilla data parallelism.
To further scale up the model size, MoE is a promising

approach that improves scalability by means of a dynamic
model design. However, the dynamic mechanism poses chal-
lenges for systems. GShard [11] implemented a transformer
model with MoE. Instead of using traditional parallel strate-
gies across workers, GShard takes advantage of the scalabil-
ity of MoE by assigning one MoE expert to each worker. The
model consists of over 600 billion parameters, and the train-
ing was scaled out to 2, 048 TPUs. Switch Transformer [3],
implemented based on Mesh-TensorFlow, further pushes the
size limit. Although Switch Transformer provides MoE with
data parallelism and model parallelism, the mixture has only
been applied to a small-sized model. Their largest model,
with 1.6 trillion parameters, uses only MoE.
Deep learning on supercomputers Training large-scale
DNN models requires huge computing capability and mem-
ory capacity, which converges with the advantage of HPC
systems. Various approaches have been proposed to deploy
training tasks on HPC systems in recent years, as listed in
Table 2. Kurth et al. [8] proposed a deep learning system
for solving scientific pattern classification problems, which
obtained a sustained (peak) 13.27 PFLOPS (15.07 PFLOPS)
throughput. Kurth et al. [7] trained a DeepLabv3+ model
at a sustained (peak) 999.0 PFLOPS (1.13 EFLOPS) through-
put. Patton et al. [17, 18] achieved sustained 152.5 PFLOPS
and 1.301 EFLOPS throughput with a system named MEN-
NDL, which discovers neural models automatically. Laanait
et al. [9] trained a fully convolutional neural network at a
sustained (peak) 1.54 (2.14) EFLOPS throughput.

Table 2. Models with corresponding training platforms and
training FLOPS

Work Platform Sustained FLOPS Peak FLOPS

Kurth et al. [8] Cori Phase-II 13.27 PFLOPS 15.07 PFLOPS
Patton et al. [17] Summit 152.5 PFLOPS -
Kurth et al. [7] Summit 999.0 PFLOPS 1.13 EFLOPS
Patton et al. [18] Summit 1.30 EFLOPS -
Laanait et al. [9] Summit 1.54 EFLOPS 2.15 EFLOPS

Unlike the approaches discussed above, BaGuaLu scales
the training tasks up to 96, 000 nodes, which is far more than
previous works and poses more challenges for communi-
cation. Moreover, the pretrained model used in this study
also brings significantly more complicated communication
requirements that no previous work has encountered.

3 System Architecture
Primarily targeting traditional HPC workloads, as the latest
machine in the Sunway family, the New Generation Sunway
Supercomputer starts to provide support for AI-based work-
loads. As the first full-scale AI training task on Sunway, we
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Figure 2. Architecture of the New Generation Sunway Supercomputer .

here list the challenges brought about by this new architec-
ture at an unprecedented scale.
Compute node In New Generation Sunway Supercomputer ,
each compute node has one SW26010-Pro heterogeneous
CPU, which consists of 6 core groups (CG). These CGs are
connected by a network on chip (NoC). Each CG consists
of 1 management processing element (MPE) and an array
of 64 computing processing elements (CPE). The MPE is a
fully functioned 64-bit RISC processor core that can take re-
sponsibility for resource management and operating system
functions. The CPE array will be discussed in detail later. A
group of DRAM channels are also attached to each CG but
are visible for all CGs through NoC.
Memory segment The memory of Sunway can be classi-
fied into three segments: the cross segment, share segment,
and private segment. The memory space in the cross seg-
ment is interleaving addressed to all six CGs, which supports
synchronous memory access from six CGs. The memory
space in the share segment is shared memory space for both
MPE and CPEs within the same CG, which supports syn-
chronous memory access from one CG. The memory space
in the private segment is private memory space for each
CPE. To achieve higher scalability, programmers need to use
this node-level parallelism rather than simply creating one
process on each CG.
CPE array architecture In a CPE array, each CPE is a
simplified RISC core with 512-bit SIMD extension for high
floating-point-processing performance but limited function-
ality. The 512-bit SIMD extension instruction set of CPE cores
enables 8 FP64/FP32 or 32 FP16/BF16 data to be processed in
a single instruction. Each CPE has an on-chip SRAM that can
be configured into a combination of scratchpad memory (i.e.,
local data memory or LDM) and cache (i.e., local data cache
or LDC). Efficient communication between CPEs and DRAM
can be implemented with asynchronous direct memory ac-
cess (DMA) to LDM or accesses through LDC. In addition to
sharing data through DRAM, CPEs in the same CG are con-
nected by an intra-CG network, enabling remote memory
access (RMA) with explicit one-sided primitives, "get" and

"set", copying between LDMs of different CPEs. This unique
accelerate architecture, together with limited DRAM band-
width, poses great challenges in designing highly optimized
implementations for operators used in our models.
Interconnectionnetwork and I/O InNewGeneration Sun-
way Supercomputer , compute nodes are connected with lay-
ered homegrown interconnect fabrics. The topology used is
a 16/3× oversubscribed fat tree[10]. A non-blocking fabric
is provided within a supernode of 256 contiguous compute
nodes to ensure full peer-to-peer bandwidth. The communi-
cation bandwidth across supernodes is 3/16× of that within a
supernode. To use the interconnect efficiently, programmers
must carefully map various levels of parallelism to different
compute nodes in applications. Alongside the interconnect,
the I/O subsystem connected to global storage uses a distinct
network, making it possible to overlap I/O with communica-
tion without losing performance.

4 Methodology
BaGuaLu is the first work aiming at efficiently training brain-
scale pretrained models on an entire exascale supercomputer.
By leveragingHPC techniques, hardware specializations, and
application characteristics, we propose four key innovations:
hardware-specific intra-node optimization, an efficient hybrid
parallel strategy, an efficient I/O implementation, and mixed-
precision training. Overall, BaGuaLu focuses on efficient and
adaptive training for large-scale models exploiting the fea-
tures of different system levels, from underlining processor
cores to an entire system.
BaGuaLu offers user-friendly programming interfaces

and a portable model format by leveraging a PyTorch fron-
tend. We implement a carefully optimized operator library
customized for theNew Generation Sunway Supercomputer to
deliver high performance on top of hardware specifications.
Our operator library includes over 60, 000 lines of C/C++
code to enable all the optimization. BaGuaLu also provides a
high-performance checkpoint mechanism for fault tolerance.
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The rest of this section introduces the techniques involved
in BaGuaLu.

4.1 Hardware-Specific Intra-node Optimization
To fully utilize the computing capability of the New Gener-
ation Sunway Supercomputer , the intra-node performance
should first be optimized. Careful design is needed to meet
the hardware specification.
Core scheduling The cross segment of memory within
one compute node provides programmers the opportunity
to access the same memory space among different CPEs. We
manage all the CPEs within one compute node using one
process running on only one MPE. There are several benefits
in this way: (1) Communication between processes requires
message passing on Sunway, which is performed across NICs.
Using one process to control all the CPEs in one node can
effectively avoid extra communication overhead. (2) The
remaining five MPEs can be used to handle communication,
I/O, and other lightweight tasks to further reduce overhead,
as shown in Figure 3. (3) The number of total processes
is reduced from 576, 000 (96, 000 × 6) to 96, 000, which can
significantly reduce the I/O pressure of loading BaGuaLu
processes.

C
PE

M
PE

D
R

A
M

Cores for computation Cores for communication, I/O, etc.

Cross segment Share segment Private segment

Figure 3. Core scheduling and memory segmentation.

Memory segmentation To use memory efficiently, the 96
GB memory of one node is partitioned into three parts: 84
GB for the cross segment, 3, 600 MB (600 × 6, 600 MB for
each CG) for the share segment, and 768MB (2×64×6, 2MB
for each CPE) for the private segment. The cross segment
is used for computation and communication, whereas the
share and private segments are used for OS libraries and CPE
libraries, respectively. The rest of the memory is managed
by the OS.
Memory access On SW26010-Pro, global load/store can
only reach a bandwidth of 0.24 GB/s. To fully utilize mem-
ory bandwidth, DMA and RMA (Section 3) are used instead
of naive global load/store to improve the performance of
operators.

RMADMA

CPE

LDM8

Cluster0
CPE

LDM7

DRAM

Cluster3

Figure 4. DMA and RMA on SW26010-Pro
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2 DMA
each column RMA on rowsDMA RMA
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Figure 5.Memory access from CPE using DMA and RMA.

As shown in Figure 4, on SW26010-Pro, four adjacent CPE
cores are organized as a cluster. Clusters are connected by
links on rows and columns. A CPE accesses another CPE’s
data using RMA through row links or column links and ac-
cesses data on DRAM using DMA through column links and
NoC.
The CPEs on the diagonal are responsible for all DMA

requests of the entire CPE array, with each CPE on the diag-
onal being responsible for its row. Taking a DMA load as an
example, as shown in Figure 5, the data are first transferred
to the CPEs on the diagonal through DMA and then trans-
ferred to each CPE through RMA. Compared to calling DMA
on every CPE, DMA+RMA can efficiently reduce the number
of DMA calls on NoC (384 to 48 with 6 CGs) and balance
them between column links (2 on each link). Meanwhile, this
method increases the granularity of DMA calls which can
potentially optimize memory bandwidth.

In cross memory, the memory space is addressed to all six
memory devices by interleaving. By rearranging DMA calls,
the load of 6 devices can be balanced for each DMA call. In
this way, the cross memory can be effectively used.

After the above optimization, the memory bandwidth can
approach the theoretical value. Taking matrix multiplication
as an example, the computation overlaps with asynchronous
communication and memory access to hide latency. In this
way, 89.2% and 85.8% of the peak performance are obtained
for single- and half-precision GEMM, respectively.
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4.2 Efficient Hybrid Parallel Strategy
To scale BaGuaLu to the entire Sunway, we design an ef-
ficient hybrid strategy including the hybrid parallel strat-
egy MoDa, the load balance policy SWIPE, and the memory-
efficient optimizer ParO.
Hybrid MoE parallelism and data parallelism strategy
(MoDa) To scale model training to brain scale with promis-
ing computing efficiency, we propose MoDa, a hybrid paral-
lel strategy of MoE parallelism and data parallelism, which
amply meets both the hardware specification and the appli-
cation characteristics. There are 3 types of communication
in each training task: 1) All-to-All feature exchange in for-
ward and backward passes within each MoE group; 2) All-
Reduce gradient synchronization for each expert crossing an
MoE group; 3) global All-Reduce gradient synchronization
for other parts of neural networks. Communications occur
in rows and columns with the data parallelism groups and
MoE exchange groups.
An optimal mapping from the communication graph to

the network topology in Sunway is necessary to achieve high
performance. In this specific case, we map 2 types of commu-
nication traffic, i.e., All-to-All for MoE parallelism (𝑇𝑎2𝑎) and
All-Reduce for (𝑇𝑎𝑟 ), to 2 different networks, i.e., communica-
tion within a supernode with a bandwidth of𝑊 and commu-
nication across supernodes with a bandwidth of𝑊𝑠𝑢𝑏 = 3

16𝑊 .
To minimize the overall latency, we should assign 𝑇𝑎2𝑎 and
𝑇𝑎𝑟 to𝑊 and𝑊𝑠𝑢𝑏 which contains two approaches. One isAll-
to-All within a supernode and All-Reduce across supernodes,
which has a theoretical latency of 𝑇𝑎2𝑎

𝑊
+ 𝑇𝑎𝑟

𝑊𝑠𝑢𝑏
. The other is

All-Reduce within a supernode and All-to-All across supern-
odes, which has a theoretical latency of 𝑇𝑎𝑟

𝑊
+ 𝑇𝑎2𝑎
𝑊𝑠𝑢𝑏

. According
to the calculation, in our target large-scale models, the ex-
pert All-Reduce communication is 16 to 24× larger than the
All-to-All communication between experts, i.e., 𝑇𝑎𝑟 > 𝑇𝑎2𝑎 ,
indicating 𝑇𝑎𝑟

𝑊
+ 𝑇𝑎2𝑎

𝑊𝑠𝑢𝑏
<

𝑇𝑎2𝑎
𝑊

+ 𝑇𝑎𝑟
𝑊𝑠𝑢𝑏

. Therefore, as shown in
Figure 6(a), although the All-to-All operations are critical in
latency and are more affected by oversubscription on Sun-
way by our micro-benchmark testing, we decide to place
the data parallelism ranks within one supernode and leave
the MoE communication globally across supernodes. This
strategy is opposite to the intuition that All-to-All commu-
nication should be assigned to the faster intra-supernode
interconnection.
SunWay Imbalance Proficiently Eliminated (SWIPE)
Load balance between experts is critical to achieving high
throughput, especially for an extremely scaled system. We
observe that the load balance strategies used in GShard [11]
and Switch Transformer [3] still left certain experts with
only 30% utilization, leading to very low system efficiency.
To address this challenge, we propose SWIPE, a load bal-

ance strategy targeting super-large systems. It proficiently
distinguishes load imbalance by re-assigning input items to
experts with a strict limit that each expert must receive an
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Figure 6. (a) MoDa with inefficient global All-reduce; (b)
MoDa enhanced by ParO, in which expert All-Reduce is re-
placed by Reduce-Scatter(1) and All-Gather(2), global All-
Reduce is replaced by Reduce-Scatter(i) within a supernode,
All-Reduce(ii) across supernodes, and All-Gather(iii) within
a supernode.

equal number of input items. Because latency of performing
assignments is also critical to overall performance, SWIPE is
designed as a distributed algorithm that requires a constant
number of communication operations, which is significantly
less than a voting-based algorithm [12] that requires up to
𝑂 (𝑛) rounds of communication.
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Figure 7. Demonstration of how SWIPE balancing MoE
workload.

In detail, SWIPE works as follows. Assume that there are 𝑛
workers. Eachworker has one expert and𝑏 inputs to dispatch.
𝑛×𝑏 scores are given for each input item to decide its expert.
We first attempt to assign every input item to the expert
with the highest score. When an expert is overloaded, i.e., it
receives more than 𝑏 inputs, it drops the rest of its incoming
inputs, which will be re-assigned, as shown in fig. 7(a). At
the same time, each expert works out the capacities after
the first attempt. Then, all workers iterate a local lookup
table, which records each expert’s capability and dropped
inputs, and use an identical deterministic algorithm to map
the dropped inputs to available experts, as shown in fig. 7(b),
which consumes 𝑂 (𝑛 + 𝑏) time. In this way, each worker is
guaranteed to receive exact 𝑏 inputs, as shown in fig. 7(c).
Note that SWIPE can be extended to allow each input to go to
its top-𝑘 highest scored experts, where 𝑘 is a given constant,
commonly 2 in existing systems [3, 11].
Parallel partition-based optimizer (ParO) To scalemodel
size to brain scale, memory capacity is the main challenge
that should be addressed. For each parameter, the parameter
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itself, its gradient, and the variables in the optimizer, e.g.,
moments in Adam[15], must be stored. Among them, the op-
timizer status can take several times the memory space of the
parameter itself, i.e., 6×when using the Adam optimizer with
mixed-precision training, leading to huge memory usage.

To solve this problem, we propose ParO. Similar to Deep-
Speed [23], we replace the All-Reduce in a data parallelism
group with Reduce-Scatter and All-Gather to partition the
optimization states across workers. However, unlike Deep-
Speed on GPU clusters, ParO works on a much larger super-
computer and interacts with MoDa, which introduces syn-
chronization between different groups of parameters across
different groups of workers. Given that there can be up to 240
ranks in a data parallelism group for each expert, the space
taken by optimizer states becomes negligible, e.g., less than
5%, compared to the parameters, gradients, and intermediate
results.

In addition, in the proposed transformermodel, one-seventh
to one-tenth of the local parameters are shared across all
workers. Because the global synchronization can be very
expensive given the fat-tree oversubscription, we use a hi-
erarchical partition and replication strategy. Workers are
placed in a 2D grid. Gradients are first Reduce-Scattered in
one dimension, thenAll-Reduced in another dimension. After
updating, the parameters are sent back along the first dimen-
sion through an All-Gather. The first dimension is mapped to
the processes within a supernode, and the second is mapped
across supernodes. As shown in Figure 6(b), All-Reduce on
gradients of globally shared parameters and later optimiza-
tion is replaced with topology-aware ParO optimization.
ParO also makes it possible to recover a completed copy

of the model parameters from the optimizer, simplifying
checkpointing by saving only metadata and optimizer data
on each rank.

4.3 Efficient I/O Implementation
To improve the availability of BaGuaLu, an effective I/O
module for AI training is needed on top of the current HPC
file systems to support both the data loader and checkpoints.
Data loader Unlike traditional HPC applications, the ma-
chine learning dataset is organized into collections of sam-
ples that are randomly selected from the dataset during train-
ing, which leads to random I/O accesses using straightfor-
ward solutions.

Taking advantage of the petascale distributed memory
and efficient interconnection network of Sunway, we design
a general data loader for AI training and convert random I/O
accesses to highly-efficient collective communications over
a high-speed interconnection network. We first pre-process
the dataset into a number of fragments (files), which were
stored in a global file system. The worker on each compute
node uniformly partitions the fragments, loads them into
memory, and assigns a unique ID for each sample. Targeting
the oversubscription network, we proposed a hierarchical

batch generator to simultaneously obtain performance and
randomness. During each iteration, workers cooperate by
MPI collective communications(mainly All-to-All) to select
samples and generate batches. Within an epoch, a worker
only obtains inputs from the workers in the same supernode.
For each epoch, workers randomly re-partition the dataset
by reloading it from the file system. Therefore, the com-
munications will not be oversubscribed and achieve higher
performance, preventing the data loader from becoming the
system’s bottleneck.
Checkpoints In the global file system in Sunway, the band-
width is influenced by both the number of processes and
the number of supernodes. Therefore, the straightforward
approach of using one MoE parallelism group to write the
whole checkpoint is performance unfriendly. We need to
use the full system to utilize the bandwidth. As illustrated
in section 4.2, we place the MoE parallelism within a supern-
ode and data parallelism across supernodes. As each expert
maintains different parameters, the ranks in each supernode
need to write independently. To scale the number of supern-
odes, we need to partition the parameters and optimizer
states and save the checkpoints with each supernode. As the
parameters and optimizer states are already partitioned in
ParO, as illustrated in sec section 4.2, each node only needs
to write its partition to the global file system, which utilizes
the bandwidth of the global file system and keeps all the data
written only once.

4.4 Mixed-precision Training
SW26010-Pro supports different types of floating-point com-
putations: FP64, FP32, FP16, and BF16. The first two use the
same computing units, leading to the same performance,
and so do the last two. The throughput of FP64 and FP32 is
14.03 TFLOPS, and the throughput of FP16 and BF16 is 55.30
TFLOPS. Therefore, training with mixed-precision leads to
significant performance improvement.
However, existing methods are impractical for direct use

on the Sunway. Most existing work is based on GPUs and
has not been verified on such large-scale model training. For
example, NVIDIA APEX [16] has four optimization levels
over FP32 training:

• O0: FP32 training.
• O1: Use FP16 in certain operators, such asGEMM or convo-
lution. The inputs will be cast before and after the mixed-
precision operation.

• O2: Cast weights and input data to FP16 and maintain an
FP32 master weight for optimization.

• O3: FP16 training.

Usually, when training regular models on NVIDIA GPUs,
O1- and O2-level training can converge to the same loss
as O0. However, on Sunway, when the APEX method is
used directly, neither of the O1- and O2-level optimizations
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Figure 8. Mixed-precision training on BaGuaLu.

works. O1-level optimization cannot achieve promising per-
formance because it requires much data type casting, which
will significantly degrade its performance on SW26010-Pro
due to the limited memory bandwidth. O2-level optimiza-
tion on Sunway cannot converge because it uses too much
FP16 data causing massive data overflow. Therefore, mixed-
precision training must be explored on extremely large-scale
models based on the Sunway to gain better performance.
It was observed that different layers have different data

patterns, leading to different contributions to the model con-
vergence. Therefore, we classify all the layers into different
categories, and for each category, we carefully tune the opti-
mization level and choose the best one so that we can achieve
both high performance and quick convergence. As shown in
Figure 8, we use O0 on the embedding layer, O1 on attention
layers, and O2 on FFN (feed-forward) layers.

Moreover, dynamic loss scaling [33] was used to prevent
the underflow of FP16. To guarantee numerical stability and
avoid possible overflow and underflow, we use FP64 for sev-
eral specific operators such as reduction, exp, sqrt, gelu, soft-
max, and layer_norm, based on the profiling results obtained.
In All-Reduce communication, we employ an online average
algorithm instead of the simple sum-and-divide algorithm
to improve numerical stability.

5 Evaluation
This section presents an evaluation of BaGuaLu. We first in-
troduce the multi-modality model and dataset in Section 5.1.
Then, we validate the core technique, including intra-node
optimizations (Section 5.4), mixed-precision (Section 5.5),
and parallel strategy (Section 5.6 and Section 5.7). The loss
curve of the proposed model is shown in Section 5.8. Finally,
we discuss the scalability and breakdown for the proposed
system in Section 5.9 and Section 5.10.

5.1 Model Setup
The performance of the various models is presented with the
proposed hybrid strategy for MoE parallelismand data paral-
lelism (MoDa), whereAll-to-All communication is assigned to
inter-supernode connections and All-Reduce communication
is assigned to intra-supernode connections. Unless indicated,

Table 3.Models used for evaluation. 𝑑model and 𝑑ff represent
the hidden dimension size and the FFN inner layer size, resp.
Model Params Layers Heads 𝑑model 𝑑ff Experts

MoDa-1.16T 1.160T 12

8 4096

4096*12 240
MoDa-1.93T 1.934T 12 4096*12 400
MoDa-14.5T 14.50T 10 4096*18 2400
MoDa-174T 173.9T 3 4096*18 96000

Table 4. Statistics of the pretraining dataset.

Source #Img #Tok #Psg Img Size Tok Size

Encyclopedia 6.5M 7.9B 10.4M 0.1TB 15.0GB
Web pages 46.0M 9.1B 106.0M 1.5TB 70.0GB
E-commerce 8.0M 0.5B 8.5M 0.3TB 12.2GB

Total 60.5M 17.5B 124.9M 1.9TB 97.2GB

all models use the proposed parallel partition-based opti-
mizer (ParO). The detailed model hyper-parameters, as well
as the model size, are listed in Table 3. We use a hidden di-
mension size of 𝑑model = 4, 096 for all models, but different
FFN inner layer dimensionalities 𝑑ff.
Multi-modality model We implement the Multi-Modality
Model based on M6 (Multi-Modality-to-Multi-Modality Mul-
titask Mega-transformer [13]) proposed by Alibaba. The in-
put contains text and image data. As shown in Figure 9, an
input image is split into patches, and its features are extracted
with pretrained backbone models such as ResNet [5]. The
features are then concatenated with word embeddings to
form a sequence. The model consisting of transformer layers
processes the sequence and generates high-level representa-
tions.

Emb Emb Emb Emb Emb Emb Emb

This is a

This is a cat Image Patches Tokens

Input cat

Transformer

Figure 9. Demonstration of the model architecture.

Dataset The model was pretrained on the largest multi-
modal dataset in Chinese, M6-Corpus [13]. Specifically, be-
cause the original dataset consists of plain text data andmulti-
modal data, only the latter were selected for pretraining. The
data are collected from different sources, including ency-
clopedias, e-commerce platforms, and other crawled web
pages. The detailed statistics of the final processed dataset
are reported in Table 4, where "#Img" refers to the number
of distinct images, "#Tok" to the number of distinct tokens,
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"#Psg" to the number of passages, "Img Size" to the size of
images, and "Tok Size" to the size of texts. Note that after
the images transformed to features, the final product was a
dataset of size 16 TB.
Model objective We pretrain the model with the objective
of image-based language modeling, referring to next-token
prediction based on the previous context, including images
and text. That can be formulated as L = − log𝑝 (𝑥𝑡 |𝑥<𝑡 ). As
shown in Figure 9, given an image of a running dog and the
text "This is a", the model is encouraged to predict the next
word, "cat".

5.2 Evaluation Setup
The following evaluations were deployed on the New Gener-
ation Sunway Supercomputer .
Timer We instrument PyTorch to obtain the execution time
for each iteration as well as the breakdown time for forward
pass, backward pass, optimizer, etc.
FLOPS We use the performance counter provided by Sun-
way to count the performance FLOPS. Each MPE and each
CPE is counted separately, and the counts are then accumu-
lated as the result of total FLOPS.

5.3 Overall Performance

Table 5. Sustained performance
Model Sustained FP32 FLOPS Sustained Mixed FLOPS

MoDa-1.93T 647 PFLOPS 1.180 EFLOPS
MoDa-14.5T 525 PFLOPS 1.002 EFLOPS
MoDa-174T 198 PFLOPS 230 PFLOPS

In our experiments, we evaluate the performance and
scalability of various models with different parameters on
different scales. The sustained performance obtained is re-
ported in Table 5.We evaluate themodelsMoDa-1.93T,MoDa-
14.5T, and MoDa-174T for both single- and mixed-precision.
MoDa-1.93T reached 647 PFLOPS and 1.180 EFLOPS in single-
and mixed-precision, respectively. MoDa-14.5T achieved 525
PFLOPS and 1.002 EFLOPS in single- and mixed-precision,
respectively. The MoDa-174T model is the largest of the pro-
posed models, with 173.9 trillion parameters. During the
training of the MoDa-174T model, we achieve 198 PFLOPS
and 230 PFLOPS in single- and mixed-precision, respectively.

5.4 Intra-node Optimization
To verify the efficiency of the intra-node optimization, we
compare different single-node implementations on Sunway:
Single CG using share segment memory (SS), multiple CGs
using share segment memory with 6 processes (MS), single
CG using cross segment memory (SC), and multiple CGs
using cross-segment memory with 1 process (MC). To fit
the model into the share segment memory (SS), we choose a
small 12-layer transformer model with hidden dimension of

1, 536, attention head 6, and batch size 12 for the single-CG
experiments (SS and SC), while using batch size 72 for the
multiple-CG experiments (MS and MC).
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Figure 10. Time per iteration and peak memory usage in
a single-node for different implementations. Note that the
workload on each CG remains the same in each group of
experiments.

Figure 10 illustrates the efficiency of intra-node optimiza-
tions, including node scheduling, memory segmenting, and
memory access. With a single CG, compared with using only
the share segment (SS), using the cross segment (SC) achieves
1.52× and 1.63× speedup via single- and mixed-precision,
respectively. With 6 CGs, using the cross segment can effec-
tively reduce inter-procedural communication, which leads
to 1.28× and 1.47× speedup via single- and mixed-precision,
respectively.
Moreover, using the cross segment can also reduce the

number of shared parameters used by different processes,
meaning that lessmemory is occupied. As shown in Figure 10,
comparing the memory usage of MS and MC, using cross
memory can reduce memory occupancy by 53% and 68% via
single- and mixed-precision, respectively.
We evaluate the memory bandwidth with different opti-

mization levels. The workload is set to 192 MB with a DMA
granularity of 512 bytes. Figure 12 shows the result of mem-
ory bandwidth optimizations. GLD/GST means using global
load and store directly. DMAmeans using DMA on each CPE.
DMA+RMA represents using DMA together with RMA as
mentioned in Section 4.1. MC means using DMA+RMA after
rearranging DMA calls. The results show that the optimiza-
tion effect of the proposed method is obvious. When using
global load and store, the memory bandwidth could only
reach 0.24 GB/s and 0.024 GB/s, respectively. DMA signifi-
cantly expanded memory bandwidth to 45.3 GB/s and 41.9
GB/s. When using DMA together with RMA, the bandwidth
could be increased to 169.1 GB/s and 162.4 GB/s due to the
increase in DMA granularity and the decrease in the num-
ber of DMA calls. After adding the rearrangement for DMA
calls, the memory bandwidth could be further boosted to
240.2 GB/s and 235.4 GB/s, respectively. This optimization
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makes full use of the characteristics of the cross memory
and effectively uses the multi-core group to increase the
memory bandwidth, which reached a bandwidth close to the
theoretical limit on Sunway.
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Figure 11. Loss curve and relative speedup of different
mixed-precision approaches. O0, O1, O2 are different op-
timization levels of APEX, and BGL is the strategy we pro-
posed.

5.5 Mixed-precision
To evaluate the proposed mixed-precision strategy, we de-
ploy MoDa-1.93T on 9, 600 nodes (1/10 of the full system).
We also evaluate different mixed-precision strategies on this
model, for example, FP32 training (O0), APEX O1 (O1), APEX
O2 (O2), and the strategy we proposed (BGL). Figure 11(a)
shows the loss curve during the first 500 training iterations.
It is apparent that BGL has a similar convergence trend to
FP32 training and APEX O1, but that APEX O2 could not
converge as fast as other strategies.

Figure 11(b) shows that, compared to FP32 training, APEX
O1 and the proposed strategy can achieve 41.5% and 92.0%
speedup, respectively, which illustrates that the proposed
mixed-precision strategy can significantly accelerate training
without degrading convergence.
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Figure 12.Memory access optimization breakdown.

5.6 MoDa
We evaluate the effectiveness of MoDa by comparing the
MoDa-1.16T model with the mapping strategy mentioned
in section 4.2 (MoDa) and with another strategy that maps
the two dimensions of communication inversely (Inv), i.e.,
All-to-All communication happens within a supernode and
All-Reduce communication happens across supernodes. Both
models are trained with single-precision on 240 supernodes,
and each supernode contains 240 nodes.

0 100 200 300 400 500
Performance (PFLOPS)

MoDa

Inv

Figure 13. Performance of MoDa and Inv.

As shown in Figure 13,MoDa and Inv achieve 386 PFLOPS
and 235 PFLOPS, respectively. This result implies that the pro-
posed parallel strategyMoDa can achieve better performance
than the straightforward approach that maps All-to-All com-
munication to intra-supernode transmission and All-Reduce
communication to inter-supernode transmission.
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Figure 14. Time per iteration and peak memory usage at
different data parallelism scales.

5.7 ParO
We compare the memory occupancy and gradient updating
time using ParO to demonstrate the efficiency of ParO. The
evaluation is performed using 1, 2, 4, 8, 16, 32, 64, and 128
nodes. The model we used for this experiment is a 5-layer
transformer with hidden dimension of 6, 144 and attention
head 6.

We test the performance and memory consumption using
the samemodel at different data parallelism scales to evaluate
the efficiency of ParO, as shown in Figure 14. As the number
of nodes grows, the forward and backward computation cost
and communication cost remains constant, while the optimiz-
ing computation spreads over nodes. Therefore optimization
time consumption is notably reduced. Alongside the reduced
optimizing time consumption, memory consumption is also
significantly reduced, confirming our expectations of ParO.
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5.8 Loss Curve
Due to budgetary concerns, we use 1/2 of the entire system
to obtain the loss curve for MoDa-1.93T. To maintain the
equivalence of training, we trainMoDa-1.93T using the same
global batch size of the model running on the entire system
bymeans of a two-step gradient accumulation. Therefore, we
can obtain the exact same training process on 1/2 machine
with the training process running on the entire system since
we have the same batch size and the same input data.

We validate BaGuaLu by inspecting the training loss of
the MoDa-1.93T. The loss curve is illustrated in Figure 15.
The training loss of MoDa-1.93T model decreases to 3.46
after 500 iterations. According to [13], the training loss is
near convergence, and it demonstrates low perplexity.

5.9 Scalability
Weexamine both theweak and strong scalability of BaGuaLu.
The scalability experiments are scaled from 6, 000 nodes
(1/16 of the entire system) to 96, 000 nodes (the entire sys-
tem). We define the problem size as both the model size and
the training data size. With the same problem size, we eval-
uate the time consumed for iterating over the same size of
data and updating the same model accordingly.
For weak scalability, we scale BaGuaLu to train MoDa-

1.93T /16, MoDa-1.93T /8, MoDa-1.93T /4, MoDa-1.93T /2, and
MoDa-1.93T on 1/16, 1/8, 1/4, 1/2, and the full system ac-
cordingly. The MoDa-1.93T /𝑥 model simply stands for the
model with 1/𝑥 of the experts in MoDa-1.93T. Fixing the
micro batch size, the model size, and the global batch size
both grow with the system scale.
For strong scalability, we fix both the number of experts

and global batch size, and measure the time of one step in
training the model. We choose the minimum model that
could be trained properly at full scale and fix the micro batch
size. For example, on 48, 000 nodes (1/2 system), each node
consumes 2 micro batches with 2× data in each iteration
and update once; on 24, 000 nodes (1/4 system), each node
consumes 4 micro batches each iteration and update once.
For weak scalability, as shown in Figure 16, when scal-

ing from 1/16 system (6, 000 nodes) to full system (96, 000
nodes), given balanced computation workload being identi-
cal between scales, we achieve nearly linear weak scalability.

For strong scalability, as shown in Figure 17, we observe
that with the setup scales from 1/16 system to full system, the
speedup is 12.5× and 11.3× for single- and mixed-precision,
respectively. The computation workload and cost remains
constant across scales, while the communication cost in-
creases. With the greater number of processes associated
with MoE All-to-all communication, the communication
granularity is lower, causing higher overhead. Meanwhile,
the reduction of gradients in optimizing the model requires
more communication traffic. Therefore, linear scalability is
not accomplished.
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Figure 18. Performance breakdown. (A), (B), and (C) de-
noteMoDa-1.93T,MoDa-14.5T, andMoDa-174T, respectively.
FP32 and Mixed denote single- and mixed-precision training.

5.10 Performance Breakdown
To better understand the application performance, we mea-
sure the performance breakdown of BaGuaLu.We useMoDa-
1.93T,MoDa-14.5T, andMoDa-174T on the full system in this
experiment.
We profile the training of MoDa-1.93T, MoDa-14.5T, and

MoDa-174T. The result time breakdown is shown in Fig-
ure 18. We observe that the All-to-All communication be-
tween experts becomes the communication bottleneck when
the model scales to 14.5 trillion parameters: the forward and
backward communication cost extends significantly. When
we scale the model to 174 trillion, with the data parallelism
group not presented, the optimizer step dominates the train-
ing cost even if All-to-All performs worse given a larger MoE
group size. This is because ParO is not available, causing the
optimizer to work on all parameters, which leads to notably
lower performance than other models.
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6 Discussions
BaGuaLu is the first application of training up to 174-trillion
parameter models on leading supercomputers. The implica-
tions of BaGuaLu have several aspects.

The work onMoDa has exposed the inefficiency of the cur-
rent state of the interconnection of HPC systems for the latest
pretrained models. Although the oversubscribed network
topology reduced the effort required to build a large-scale
system and is a good fit for many traditional HPC applica-
tions, MoE requires massive All-to-All communications that
break the optimal process mapping for neighbor communi-
cation. New advanced interconnect techniques are needed
to address AI training workloads. We expect that our explo-
ration of the communication patterns of training models at
such a scale can benefit future studies in both AI and HPC.
Furthermore, our work also has many empirical impli-

cations for both model and system design for training ex-
tremely large models. We are the first to investigate mixed-
precision training in brain scale pretrained models. We also
explore the use of large-batch training in optimization. In
general, our practical experience in brain scale pretraining
sheds light on AI model training and demonstrates a suc-
cessful co-design of model and system. Our large scale multi-
modal pretraining is expected to have broad and far-reaching
impacts on various applications, including, but not limited
to, image/video captioning, image/video generation, cross-
modal retrieval, visual question answering, visual common-
sense reasoning, object referral, multi-modal dialog system,
and multi-modal translation.
Beyond applications in computer vision and natural lan-

guage processing, the paradigm of MoE parallelization and
large-batch training brings new research questions to the
computer science community. Although these techniques are
key contributors to the proposed large-scale model, their un-
derlying mechanism remains undiscovered from the perspec-
tive of machine learning and optimization. In the longer term,
our practical experience in training large-scale models can
be further adapted to other domains such as biology [24, 27]
and chemistry [26].

7 Conclusion
This paper proposed BaGuaLu, the first work targeting
training brain scale models on an entire exascale super-
computer. This is an unprecedented demonstration of al-
gorithm and system co-design on the convergence of AI
and HPC. BaGuaLu enables decent performance and scal-
ability on extremely large models by combining hardware-
specific optimizations, hybrid parallel strategies, and mixed-
precision training. Evaluation shows that BaGuaLu can train
14.5-trillion-parameter models with a performance of over 1
EFLOPS, and has the capability of training brain scale models
with up to 174 trillion parameters.
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